Somatotopy and temporal dynamics of sensorimotor interactions: evidence from double afferent inhibition

Luigi Tamè, Francesco Pavani, Christoph Braun, Romeo Salemme, Alessandro Farnè and Karen T. Reilly

Department of Psychological Sciences, Birkbeck, University of London, Malet Street London, WC1E 7HX, London, UK
INSERM U1028, CNRS UMR5292, ImpAct Team, Lyon Neuroscience Research Centre, Lyon, France
Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy
MEG-Zentrum, University Tübingen, Tübingen, Germany
University Claude Bernard Lyon I, Lyon, France

Keywords: motor, sensorimotor integration, somatosensory system, transcranial magnetic stimulation

Abstract

Moving and interacting with the world requires that the sensory and motor systems share information, but while some information about tactile events is preserved during sensorimotor transfer the spatial specificity of this information is unknown. Afferent inhibition (AI) studies, in which corticospinal excitability (CSE) is inhibited when a single tactile stimulus is presented before a transcranial magnetic stimulation pulse over the motor cortex, offer contradictory results regarding the sensory-to-motor transfer of spatial information. Here, we combine the techniques of AI and tactile repetition suppression (the decreased neurophysiological response following double stimulation of the same vs. different fingers) to investigate whether topographic information is preserved in the sensory-to-motor transfer in humans. We developed a double AI paradigm to examine both spatial (same vs. different finger) and temporal (short vs. long delay) aspects of sensorimotor interactions. Two consecutive electrocutaneous stimuli (separated by either 30 or 125 ms) were delivered to either the same or different fingers on the left hand (i.e. index finger stimulated twice or middle finger stimulated before index finger). Information about which fingers were stimulated was reflected in the size of the motor responses in a time-constrained manner: CSE was modulated differently by same and different finger stimulation for both index and middle fingers for the double stimulation condition. We then investigated the spatial specificity of this information by examining the motor cortex response following double stimulation of the same vs. different fingers. Here we showed that the motor cortex response following double stimulation of the same fingers was modulated differently in a spatially specific manner compared to the motor cortex response following double stimulation of different fingers. These findings suggest that the motor cortex responds in a spatially specific manner to tactile stimulation and that the spatial specificity of this information is preserved in the sensory-to-motor transfer.}

Introduction

In order to sensibly interact with the world and skilfully manipulate objects, information needs to be shared between the somatosensory and motor systems (Rossi et al., 1998; Brochier et al., 1999; Nelson et al., 2004). The two systems communicate via a network of extensive connections between the sensory and motor cortices (Asanuma et al., 1968; Strick & Preston, 1978; Stepniewska et al., 1993; Andersson, 1995; Huffman & Krubitzer, 2001; Makris et al., 2005; Shinoura et al., 2005; Eickhoff et al., 2010; Mao et al., 2011; Catani et al., 2012), but also by motor cortex cells responding directly to sensory stimuli (Albe-Fessard & Liebeskind, 1966; Goldring & Ratcheson, 1972; Fetz et al., 1980; Fromm et al., 1984) and sensory cortex cells controlling motor behaviour (Matyas et al., 2010). Despite having relatively good knowledge of the anatomical substrate for communication between the primary sensory and motor cortices, particularly with respect to the hand (Hikosaka et al., 1985), our understanding of what information is transferred remains poor.

It is well known that the excitability of the sensory system is reduced when two afferent stimuli separated by an appropriate delay are delivered to the same location (McLaughlin & Kelly, 1993; Raggert et al., 2008; Wülhe et al., 2011; Lenz et al., 2012; Young-Bernier et al., 2012; Gatica Tossi et al., 2013). In recent studies using this repetition suppression (RS) paradigm, we showed stronger RS (i.e. less activity) in the primary somatosensory cortex (SI) when the same finger was stimulated twice than when two adjacent fingers were stimulated (Tame et al., 2012, 2015), suggesting that SI responds in a finger-specific manner. On the basis of this finding, we reasoned that if somatic topology is preserved in the transfer from the somatosensory to the motor cortices, then the activity of the motor cortex should be different after index–index than middle–index cutaneous stimulation. To investigate this we took the typical afferent inhibition (AI) protocol in which a single cutaneous stimulus delivered at an appropriate delay reduces the amplitude of the
muscular response evoked by transcranial magnetic stimulation (TMS; Delwaide & Olivier, 1990; Chen et al., 1999; Tokimura et al., 2000; Abbruzzese et al., 2001; Miniussi et al., 2013) and modified it to include the presentation of two stimuli either at the same or different locations.

The specific aim of the present work was to combine the RS and AI approaches to investigate whether the somatic topology of the somatosensory response to two stimuli is transferred to the motor cortex. Specifically, we investigated whether spatial information about which fingers are stimulated (index–index or middle–index) is reflected in the excitability of the motor cortex, or whether the output of the motor system does not preserve information about their spatial distribution. To test this hypothesis we modified the AI paradigm (Tamburin et al., 2005) by delivering two tactile stimuli (same or different fingers) separated by a short (30 ms) or long (125 ms) delay at various times before a single TMS pulse over the contralateral motor cortex.

Materials and methods

Participants

Seventeen healthy subjects (mean age = 27 years, SD = 6; range 20–44 years; 10 females) took part in the experiment after giving written informed consent and being screened for contraindications to TMS. Fourteen were right-handed by self-report, and all reported normal somatosensation and were not aware of the specific purpose of the study. The study was approved by the local ethics committee and was conducted in accordance with the ethical standards of the 1964 Declaration of Helsinki (last update: Seoul, 2008).

Experimental set-up

During the experiment participants were comfortably seated in front of a computer screen with both hands resting on their thighs in a palm-up position. Vision of their hands was occluded by a black cloth positioned over the forearms and hands. To examine cortical excitability following same vs. different finger stimulation, two consecutive electrocutaneous stimuli (adaptor and probe) were delivered to either one or two fingers on the left hand. This is very similar to the approach adopted by the classical short- (Delwaide & Olivier, 1990; Tokimura et al., 2000) and long- (Chen et al., 1999; Abbruzzese et al., 2001) latency AI studies that with single afferent touch investigated corticospinal excitability (CSE) reflecting sensorimotor integration. The two stimuli on these double afferent stimulation trials were separated by either a short (30 ms) or long (125 ms) delay, and the first stimulus was delivered to either the index or middle finger (adaptor) whereas the second was always delivered to the index finger (probe; i.e. short/long\textsubscript{index–index} and short/long\textsubscript{middle–index}; Fig. 1). We limited our protocol to conditions in which the index finger was the second stimulated finger due to time constraints and because the majority of AI studies examine index finger stimulation.

The 30- and 125-ms delays were chosen because the somatosensory activation within the SI is assumed to persist for at least 60 ms (Allison et al., 1992; Mauguière et al., 1997) and its signal recovery time has been reported to be about 110 ms (Hamada et al., 2002). Thus, in the 30-ms condition the processing of both stimuli overlapped within the SI (Chung et al., 2002; Martin-Cortecero & Nuñez, 2014; Nakagawa et al., 2014), whereas in the 125-ms condition the first stimulus is processed by the SI before the second stimulus arrives and therefore the stimuli interact at later stages, most likely in the secondary somatosensory cortex (SII) or the parietal cortex. The rationale behind these specific timings comes from the different retention times of the somatosensory signal in the SI. This argument has been recently confirmed in a study from our group using magnetoencephalography, in which we demonstrated that two afferent stimuli applied to the fingers interact differently in the somatosensory cortices when separated by 30 or 125 ms (Tamè et al., 2015).

The second afferent stimulus was always applied to the index finger and was followed by a single TMS pulse over the right motor cortex at one of five possible inter-stimulus intervals (ISIs; 15, 30, 45, 60 or 75 ms; Fig. 1). These ISIs are similar to those used in a number of previous studies investigating short AI (Tokimura et al., 2000; Helmich et al., 2005; Tamburin et al., 2005). To determine if two consecutive afferent stimuli modulated CSE, we compared CSE on double afferent stimulation trials with CSE on single afferent stimulation trials on which a single stimulus was delivered to the index finger followed by a single TMS pulse at one of the same five ISIs used for the double afferent stimulation trials (15, 30, 45, 60 or 75 ms). Note that we use the term ‘delay’ to refer to the temporal interval between two cutaneous afferent stimuli (delay = 30 or 125 ms) and the term ‘ISI’ to refer to the temporal interval between the second afferent stimulus and the TMS pulse on double afferent stimulation trials and between the single afferent stimulus and the TMS pulse on single afferent stimulation trials (ISI = 15, 30, 45, 60 or 75 ms).

Cutaneous stimulation

Tactile stimulation consisted of a brief (100 μs) single electrical pulse delivered by a constant current stimulator (DS7A; Digitimer,
UK). To ensure that the stimulated area was limited to the volar surface of the distal phalanges of each finger, we used bipolar adhesive electrodes that were placed on the distal and middle phalanges of the left index and middle fingers with the anode approximately 2 cm proximal to the cathode. Prior to commencing the TMS phase of the experiment, the sensory threshold (the minimal stimulus intensity detectable by the participant on five out of 10 trials) was determined for each finger separately using a staircase procedure. The intensity of the tactile stimulus used throughout the experiment was set at 2.5 times the sensory threshold. The choice of this particular intensity was dictated by the results of a previous study showing that lower intensities did not always induce SAI, and that inhibition produced by higher intensities was not modulated by the interval between the tactile stimulus and the TMS pulse (Tamburin et al., 2001; Wood et al., 2010).

Physiological measurements and TMS

Electromyographic (EMG) activity was recorded using Ag-AgCl surface electrodes placed over the first dorsal interosseus (FDI) of the left hand. The FDI was chosen because there is an extensive body of literature examining the effect of cutaneous stimulation of the index fingertip on TMS-evoked responses in this muscle (Tokimura et al., 2000; Helmich et al., 2005; Tamburin et al., 2005; Bikmullina et al., 2009). The EMG signal was sampled at 2000 kHz, digitalised using an analogue-to-digital converter (Power 1401II; Cambridge Electronics Design, Cambridge, UK) and stored on a computer for off-line data analysis.

Motor-evoked potentials (MEPs) were evoked using a Magstim 200 stimulator with a 70-mm diameter figure-of-eight coil (Magstim, Carmarthenshire, UK) positioned over the right primary motor cortex with the handle pointing backwards at an angle of approximately 45° to the sagittal plane. The optimal scalp position for stimulating the FDI was marked on a close-fitting cap placed on the participant’s head, and the stimulator intensity chosen was the intensity that elicited MEPs of approximately 1 mV in the FDI.

Procedure

Each experimental trial started with a black cross on a grey background displayed in the centre of the screen. Participants were asked to fixate the cross during the experimental session. At a random delay between 0 and 500 ms after the cross was displayed, participants received either one or two tactile stimuli followed by a TMS pulse or a TMS pulse alone. Every 29 trials participants were invited to take a short break and the experimenter verified that the TMS coil was correctly positioned. A total of 384 trials [12 for each tactile–TMS trial-type (6) and ISI (5) plus 24 TMS-only trials] were delivered in a totally randomised design. TMS-only trials were equally distributed in each quartile of the testing session. Inter-trial intervals ranged between 5 and 6 s. The whole experiment, including the time to establish the TMS and cutaneous stimulation parameters, lasted approximately 2 h.

Analysis

The peak-to-peak MEP amplitude between 15 and 50 ms after the TMS pulse was calculated using a custom-written Spike 2 script. To calculate the percentage of inhibition induced by the presence of two rather than one tactile stimuli, the average peak-to-peak MEP amplitude recorded on double tactile stimulation trials (i.e. middle–index and index–index) was normalised to the average peak-to-peak MEP amplitude recorded on single (index) tactile stimulation trials. Thus, a value of 33% corresponds to a MEP on a double afferent trial one-third the size of the MEP evoked after index finger stimulation alone.

The standard technique for analysing modulations of tactile RS by finger identity (same vs. different between adaptor and probe) is to compare the physiological signal during double same-finger vs. double different-finger trials (Li Hegner et al., 2007, 2010; Wühle et al., 2010; Tamé et al., 2012). Thus, we performed a three-way repeated-measures ANOVA on the amplitude of the normalised double stimulation MEPs with condition (same fingers, different fingers), delay (30 and 125 ms) and touch-TMS ISI (15, 30, 45, 60, 75 ms) as within-participant factors. All data passed the Kolmogorov–Smirnov and Shapiro–Wilk tests for normality. Two-tailed paired t-tests were used for all planned comparisons.

Results

The standard analysis technique in AI studies is to examine changes in CSE in the presence of a single afferent stimulus. Thus, to ensure that we evoked AI under standard conditions, we first compared the MEP amplitude following a single afferent stimulus (on the index or middle finger) for each of the different ISIs (i.e. 15, 30, 45, 60 and 75 ms) with the TMS-only MEP amplitude. Two-tailed t-tests revealed significant inhibition for some ISIs for both single index (i.e. ISI of 15 ms: M ± SE = 0.96 ± 0.08 mV; t_{16} = −2.28, P = 0.04; ISI of 45 ms: M ± SE = 0.93 ± 0.08 mV; t_{16} = −2.81, P = 0.01) and single middle (i.e. ISI of 45 ms: M ± SE = 0.83 ± 0.09 mV; t_{16} = −4.08, P = 0.001; ISI of 60 ms: M ± SE = −0.83 ± 0.09 mV; t_{16} = −4.72, P = 0.0001) finger stimulation conditions.

Next, we investigated whether MEP amplitudes on double afferent stimulation trials differed from those on single afferent stimulation trials by normalising MEP amplitudes on double trials to amplitudes on single index afferent stimulation trials (MEP ratio; Fig. 2). A three-way repeated-measures ANOVA (condition × delay × touch-TMS ISI) showed significant main effects of delay (F_{1,16} = 6.19, P < 0.024, MSE = 0.19, η^2_p = 0.28) and condition (F_{1,16} = 8.41, P < 0.001, MSE = 0.04, η^2_p = 0.34), as well as an interaction between delay and condition (F_{1,16} = 4.75, P < 0.04, MSE = 0.1, η^2_p = 0.23). The main effect of delay was due to the fact that motor cortex excitability was lower when the delay between the two tactile stimuli was 125 ms than when it was 30 ms (t_{16} = 2.49, P = 0.024). At the long delay, MEPs were equally inhibited at each ISI regardless of whether the stimulated fingers were the same (M ± SE = 84 ± 7%) or different (M ± SE = 85 ± 5%; P = 0.8). At the short delay, however, MEPs were larger (less inhibited) when the stimulated fingers were the same (M ± SE = 103 ± 5%) than when they were different (M ± SE = 90 ± 3%; P = 0.004).

Two-tailed t-tests comparing MEP amplitude on double afferent stimulation trials with MEP amplitude on single index afferent stimulation trials showed that for the 30-ms delay (Fig. 2A), inhibition was significant for two middle–index conditions (i.e. 30 ms ISI: t_{16} = −4.48, P = 0.0004; 75 ms ISI: t_{16} = −2.97, P = 0.009) but not for any of the index–index conditions (All P > 0.1), while for the 125-ms delay (Fig. 2B) there was significant inhibition for some ISIs for both middle–index (ISIs of 15 ms: t_{16} = −5.09, P = 0.0001; 30 ms: t_{16} = −2.36, P = 0.03; 45 ms: t_{16} = −2.27, P = 0.04) and index–index (ISI of 30 ms: t_{16} = −2.51, P = 0.02; 45 ms: t_{16} = −3.22, P = 0.005; 75 ms: t_{16} = −2.18, P = 0.04) conditions. Thus, under certain conditions CSE was significantly reduced when TMS was preceded by two tactile stimuli applied to...
inhibited less by stimuli applied to the same finger (index–index) than to two different fingers (middle–index). In contrast, when the two tactile stimuli were separated by 125 ms, they inhibited a motor response by the same amount, regardless of whether they were delivered to the same or different fingers.

Discussion

In the present study we used a double AI paradigm with two different delays between the tactile stimuli to investigate the transfer of spatial information between the somatosensory and motor cortices. We found that two consecutive electrocutaneous stimuli inhibited TMS-induced motor responses in the FDI, and that motor responses were smaller (more inhibited) when the tactile stimuli were separated by a long (125 ms) than a short (30 ms) delay. Importantly, same finger stimulation produced ‘less’ inhibition than different finger stimulation ‘only’ when the two stimuli were separated by a short delay. Because AI is thought to arise from inhibitory connections from the somatosensory to motor cortices (Sailer et al., 2003; Udupa et al., 2009; Murray & Keller, 2011), and because the reduced response of the somatosensory cortex to repeated presentations of the same stimulus within short delays is well known (Chung et al., 2002; Ragert et al., 2008; Wüthle et al., 2011; Gatica Tosi et al., 2013), we argue that the topological information present in the somatosensory cortices can be transferred to the motor cortex. The smaller somatosensory response after same vs. different finger stimulation appears to result in weaker inhibitory inputs to the motor cortex and less inhibition of the TMS-evoked motor response. The existence of direct connections between the sensory areas in the post-central gyrus and the motor areas of the precentral gyrus has been demonstrated by Catani and colleagues who, using diffusion tractography, revealed the presence of U-shape fibres that directly connect the SI with the motor cortex (Catani et al., 2012). These fibres are thought to connect the somatosensory and motor areas of the cortical regions that are involved in the control of finely tuned movements and complex motor skills (i.e. the hand’s brain regions).

Interestingly, while sensory-to-motor inhibition was similar for same vs. different finger stimulation at the long delay (125 ms), the two afferent stimuli were not processed as fully independent events, as MEPs were smaller when the two stimuli were separated by 125 ms than by 30 ms. Thus, at least for the hand, information about both when and where tactile stimuli occur is processed within the somatosensory neural network and reflected in the output of the motor cortex when probed with single-pulse TMS.

In our short delay condition both the first and second cutaneous stimuli precede the TMS pulse by between 15 and 105 ms, delays that are generally considered to generate SAI (Delwaide & Olivier, 1990; Chen et al., 1999; Sailer et al., 2003; Voller et al., 2006; Udupa et al., 2009; although they have also been associated with facilitation; see Tamburin et al., 2001; Kessler et al., 2005). In contrast, for our long delay condition the second stimulus occurs within the SAI window, but the first stimulus (between 140 and 200 ms before the TMS pulse) occurs between those ISIs generally agreed upon as evoking SAI and those thought to evoke long AI (Chen et al., 1999; Chen, 2004). Thus, the inhibition effects that we observe in both our short and long double stimulation conditions likely reflect the effects produced by each cutaneous stimulus, with a mixture of SAI and LAI effects being possibly present in the long delay condition.
Reduced corticospinal inhibition after same finger stimulation

The physiological RS response was originally described in single cell recordings (Gross et al., 1972; Tanaka et al., 1991). More recently, neural RS mechanisms have been inferred from decremented levels of cerebral blood flow using functional magnetic resonance imaging (fMRI; Grill-Spector & Malach, 2001; Lingnau et al., 2009), and are thought to underlie the behavioural results reported using TMS-adaptation paradigms (Cattaneo et al., 2011; Guzman-Lopez et al., 2011; Perini et al., 2012). We recently studied tactile adaptation of the fMRI blood oxygen level-dependent (BOLD) response by delivering pairs of vibrotactile stimuli to the fingertips of the index and middle fingers of both hands (Tamè et al., 2012; see also Li Hegner et al., 2007, 2010). We found that there was a greater reduction in the activation (i.e. BOLD response) in the SI and SII after stimulation of the same (index–index) than different fingers (middle–index), suggesting that these areas clearly distinguish between the cortical representations of adjacent fingers. Moreover, we observed that tactile stimuli induced ‘deactivation’ in the primary motor cortex (i.e. negative BOLD response), and that the deactivation pattern mirrored the activation pattern observed in the somatosensory cortices. That is, there was less motor deactivation when double touches were delivered to the same than different fingers (Tamè et al., 2012). As no other tactually responsive area of the brain showed a pattern consistent with tactile adaptation, the primary motor cortex deactivation was attributed to modulations originating in the somatosensory cortices (Tamè et al., 2012). The pattern of motor cortex modulation observed in the present experiment suggests that even though the somatosensory cortices modulate their activity as a function of the topology and timing of afferent events, the transfer of this information to the motor cortex is constrained by the temporal aspects of the afferent stimuli. At short delays, motor cortex excitability reflects information about the presence and location of afferent events, whereas at longer delays the presence of multiple afferent events is communicated to the motor cortex, but location information is lost. Thus, this modification of the classical SAI paradigm, in which a single touch at the periphery precedes TMS over the motor cortex (Delwaide & Olivier, 1990; Tokimura et al., 2000; Udupa et al., 2009), provides an additional means by which to explore the topological features of sensorimotor connections as well as their temporal dynamics.

Spatial transfer of AI

The interactions we observed within the short delay condition are consistent with the well-known temporal (Allison et al., 1992; Mauguïere et al., 1997) and structural (Schweizer et al., 2001; Nelson & Chen, 2008) response profile of the SI after paired stimulation (Wühe et al., 2011). The estimated persistence timing of a tactile stimulus in contralateral SI is at least 60 ms (Allison et al., 1992; Mauguïere et al., 1997; Wühe et al., 2011), well beyond the 30-ms interval between stimuli in our short delay condition. Thus, when separated by 30 ms (but not 125 ms), the processing of the two stimuli partially overlaps in time within the SI. Given the well-defined somatotopic organization of the SI (Overduin & Servos, 2004; Martuzzi et al., 2014) and IMRI data showing that it is sensitive to tactile RS (Tamè et al., 2012), it is likely that alterations in SI activity are responsible for the finger-specific reduction in CSE we observed at the short delay, although changes in spinal and/or subcortical circuits (e.g. direct thalamo-motor cortex projections) might have also contributed to the pattern of results we observed.

The absence of any difference in double AI between same and different finger stimulation at the 125-ms delay suggests that when two stimuli enter somatosensory processing with a larger temporal separation topological information is either lost or treated in such a way that it is no longer transferred to the motor cortex. Indeed, our 125-ms delay is longer than the 110 ms estimated recovery time of a tactile signal in the SI (Hamada et al., 2002). While the precise definition of the temporal window within which spatial information is retained in the SI and then transferred to the motor cortex was outside the scope of the study, we suggest that 125 ms between afferent stimuli is too long to preserve spatial information pertaining to the first stimulus. However, at this timing two subsequent stimuli still undergo some degree of integration, as they potentiate the inhibitory effect of the first stimulus. This interpretation is consistent with paired-pulse suppression studies of somatosensory cortex excitability that show that in the SI the longer the delay between two afferent stimuli the smaller the reduction in the amplitude of the somatosensory evoked/field potential (McLaughlin & Kelly, 1993; Stevenson et al., 2012), and that in the SII this pattern is reversed (Wühe et al., 2011).

The ‘time-selective’ sensory–motor interactions we demonstrate here are likely to be important for haptic control (Johansson & Flanagan, 2009), as complex hand–object interactions require closely timed events to be precisely localised in space, whereas the spatial resolution of more distant events is less critical.

Acknowledgements

This work was supported by the Labex/Idex ANR-11-LABX-0042, IHU CéSMe ANR-10-BHU-0003 and by grants from Fondation pour la Recherche Médicale (FRM), and a James S. McDonnell Foundation Scholar Award to A.F. L.T. was supported by a Marie Curie Individual Fellowship (COFUND) from the European Commission and by Provincia Autonoma di Trento (nr. 40101908). The authors would also like to thank the Fondazione Cassa di Risparmio di Trento e Rovereto.

Abbreviations

AI, afferent inhibition; BOLD, blood oxygen level-dependent; CSE, corticospinal excitability; EMG, electromyographic; FDI, first dorsal interosseus; fMRI, functional magnetic resonance imaging; IS1, inter-stimulus interval; MEP, motor-evoked potential; RS, repetition suppression; SI, primary somatosensory cortex; SII, secondary somatosensory cortex; TMS, transcranial magnetic stimulation.

References

on independent finger movements and force control in the precision grip.

* European Journal of Neuroscience, 1–7

© 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
somatosensory cortices to the representation of body parts and body sides:
gration of bilateral touch in the primary somatosensory cortex. *Hum. Brain
Mapp.*, 36, 1506–1523.
images of objects in the inferotemporal cortex of the macaque monkey.
Tokimura, H., Di Lazzaro, V., Tokimura, Y., Oliviero, A., Profice, P., Insola,
tion of human hand motor cortex by somatosensory input from the hand.
latency afferent inhibition and long interval intracortical inhibition. *Exp.
Voller, B., St Clair Gibson, A., Dambrosia, J., Pirio Richardson, S., Loma-
the primary somatosensory cortex revealed by short-latency afferent inhibi-
processing of near-threshold tactile stimuli: an MEG study. *Psychophysiol-
ogy*, 47, 523–534.
Wühle, A., Preisil, H. & Braun, C. (2011) Cortical processing of near-thresh-
afferent modulation of TMS responses reveals a selective decrease in short